
Chapter 5

Fuzzy Logic Control for
Business, Finance, and
Management

Fuzzy logic control methodology has been developed mainly for the
needs of industrial engineering. This chapter introduces the basic ar-
chitecture of fuzzy logic control for the needs of business, finance, and
management. It will show how decisions can be made by using and
aggregating if . . . then inferential rules. Instead of trying to build con-
ventional mathematical models, a task almost impossible when complex
phenomena are under study, the presented methodology creats fuzzy
logic models reflecting a given situation in reality and provides solution
leading to suggestion for action. Application is made to a client financial
risk tolerance ability model.

5.1 Introduction

Complex systems involve various types of fuzziness and undoubtedly
represent an enormous challenge to the modelers.

The classical control methodologies developed mainly for engineer-
ing are usually based on mathematical models of the objects to be con-
trolled. Mathematical models simplify and conceptualize events in na-
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ture and human activities by employing various types of equations which
must be solved. However, the use of mathematical models gives rise to
the question how accurate they reflect reality. In complicated cases the
construction of such models might be impossible. This is especially true
for business, financial, and managerial systems which involve a great
number of interacting factors, some of socio-psychological nature.

Fuzzy logic models employ fuzzy sets to handle and describe im-
precise and complex phenomena and uses logic operations to arrive to
conclusion.

Fuzzy sets (in particular fuzzy numbers) and fuzzy logic applied to
control problems form a field of knowledge called fuzzy logic control
(FLC).1 It deals with control problems in an environment of uncer-
tainty and imprecision; it is very effective when high precision is not
required and the control object has variables available for measurement
or estimation.

Imitating human judgment in common sense reasoning FLC uses
linguistic values framed in if . . . then rules. For instance: if client’s
annual income is low and total networth is high, then client’s risk toler-
ance is moderate. Here the linguistic variables annual income and total
networth are inputs; the linguistic variable risk tolerance is output; low,
high, and moderate are values (terms or labels) of linguistic variables.

The implementation of FLC requires the development of a knowledge
base which would make possible the stipulation of if . . . then rules by
using fuzzy sets. Important role here plays the experience and knowl-
edge of human experts. They should be able to state the objective of
the system to be controlled.

The goal of control in engineering is action. In business, finance,
and management we expand the meaning of control and give broader
interpretation of action; it might be also advise, suggestion, instruction,
conclusion, evaluation, forecasting.

This chapter introduces the basic architecture of FLC. It shows how
control problems can be solved by if . . . then inferential rules without
using conventional mathematical models. The presented methodology
of heuristic nature can be easily applied to numerous control problems
in industry, business, finance, and management. FLC is effective when
a good solution is sought; it cannot be used to find the optimal (best)
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solution. However in the real world it is difficult to determine what is
meant by the best.

A block diagram for control processes is depicted in Fig. 5.1. The
meaning of each block is explained in the sections in this chapter.

Linguistic

variables

described by

fuzzy sets

Real problem

INPUT

Aggregation:

fuzzy output

Rules 

evaluation

If ... then rules

Defuzzification

Crisp output:

ACTION

FUZZY LOGIC CONTROL MODEL

Fig. 5.1. Block diagram for fuzzy logic control process.

The FLC process will be illustrated step by step on a simplified
client financial risk tolerance model.

5.2 Modeling the Control Variables

Control problems have inputs and outputs considered to be linguistic
variables.

Here we explain the FLC technique on a system with two inputs A,B
and one output C. The same technique can be extended and applied to
problems with more inputs and outputs. It can be applied also in the
case when the problem has only one input and one output.

Linguistic variables are modeled by sets A,B, C (see Section 2.4)



130 Chapter 5. Fuzzy Logic Control for Business, Finance, and . . .

containing certain number of terms Ai,Bj, Ck:

A = {A1, . . . ,Ai,Ai+1, . . . ,An},
B = {B1, . . . ,Bj ,Bj+1, . . . ,Bm}, (5.1)

C = {C1, . . . , Ck, Ck+1, . . . , Cl}.

The terms Ai,Bj , and Ck are fuzzy sets defined as

Ai = {(x, µAi
(x))|x ∈ Ai ⊂ U1}, i = 1, . . . , n,

Bj = {(y, µBj
(y))|y ∈ Bj ⊂ U2}, j = 1, . . . ,m, (5.2)

Ck = {(z, µCk
(z))|z ∈ Ck ⊂ U3}, k = 1, . . . , l.

The design of the sets (5.2) requires:

(i) Determination of the universal sets U1, U2, U3 (or operating do-
mains) of the base variables x, y, z for the linguistic variables de-
scribed by A,B, C (see Section 2.4).

(ii) Selection of shapes, peaks, and flats of the membership functions
of Ai,Bj, Ck (the terms). Most often triangular, trapezoidal, or
bell-shaped types of membership functions are used (or part of
these), hence then (5.2) are fuzzy numbers.

(iii) Specifying the number of terms in (5.1), i.e. the numbers n,m,
and l. Usually these numbers are between 2 and 7.

(iv) Specifying the supporting intervals (domains) for the terms
Ai,Bj , Ck.

Case Study 17 (Part 1) A Client Financial Risk Tolerance Model

Financial service institutions face a difficult task in evaluating clients
risk tolerance. It is a major component for the design of an investment
policy and understanding the implication of possible investment options
in terms of safety and suitability.

Here we present a simple model of client’s risk tolerance ability which
depends on his/hers annual income (AI) and total networth (TNW).
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The control objective of the client financial risk tolerance policy
model is for any given pair of input variables (annual income, total
networth) to find a corresponding output, a risk tolerance (RT) level.

Suppose the financial experts agree to describe the input variables
annual income and total networth and the output variable risk tolerance
by the sets (particular case of (5.1)):

Annual invcome
4
= A = {A1,A2,A3} = {L,M,H},

T otal networth
4
= B = {B1,B2,B3} = {L,M,H},

Risk tolerance
4
= C = {C1, C2, C3} = {L,MO,H},

hence the number of terms in each term set is n = m = l = 3. The terms
have the following meaning: L

4
= low,M

4
= medium,H

4
= high, and

MO
4
= moderate. They are fuzzy numbers whose supporting intervals

belong to the universal sets U1 = {x × 103|0 ≤ x ≤ 100}, U2 = {y ×
104|0 ≤ y ≤ 100}, U3 = {z|0 ≤ z ≤ 100} (see Figs. 5.2–5.4). The
real numbers x and y represent dollars in thousands and hundred of
thousands, correspondingly, while z takes values on a psychometric scale
from 0 to 100 measuring risk tolerance. The numbers on that scale have
specified meaning for the financial experts.

The terms of the linguistic variables annual income, total networth,
and risk tolerance described by triangular and part of trapezoidal num-
bers formally have the same membership functions presented analyti-
cally below (see (1.13) and (1.15)):

µL(v) =

{

1 for 0 ≤ v ≤ 20,
50−v
30 for 20 ≤ v ≤ 50,

µM (v) =

{

v−20
30 for 20 ≤ v ≤ 50,

80−v
30 for 50 ≤ v ≤ 80,

(5.3)

µH(v) =

{

v−50
30 for 50 ≤ v ≤ 80,

1 for 80 ≤ v ≤ 100.

Here v stands for x, y, and z, meaning x substituted for v in (5.3) gives
the equations of the terms in Fig. 5.2, y substituted for v produces the
equations of terms in Fig. 5.3, and z substituted for v gives the equations
of the terms in Fig. 5.4 (the second term µM (v) should read µMO(z)).
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Fig. 5.2. Terms of the input annual income.
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Fig. 5.4. Terms of the output risk tolerance.
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5.3 If . . . and . . . then Rules

Next step is setting the if . . . and . . . then rules of inference called also
control rules or production rules.

The number of the rules is nm, the product of the number of terms
in each input linguistic variable A and B (see (5.1)).2 The rules are
designed to produce or have as a conclusion or consequence l < nm
different outputs (l is the number of terms in the output variable C).

The rules with the possible fuzzy outputs labeled Cij are presented
symbolically on the rectangular n×m (n rows and m columns) Table 5.1
called decision table where Cij, i = 1, . . . , n, j = 1, . . . ,m, are renamed
elements of the set {C1, . . . , Cl}.

Table 5.1. Decision table: if . . . and . . . then rules.

B1 · · · Bj Bj+1 · · · Bm

A1 C11 · · · C1j C1,j+1 · · · C1,m

...
...

...
...

...

Ai Ci1 · · · Cij Ci,j+1 · · · Ci,m

Ai+1 Ci+1,1 · · · Ci+1,j Ci+1,j+1 · · · Ci+1,m

...
...

...
...

...

An Cn1 · · · Cnj Cn,j+1 · · · Cnm

The actual meaning of the if . . . and . . . then rules is

If x is Ai and y is Bj then z is Ck. (5.4)

On Table 5.1, Ck renamed Cij is located in the cell at the intersection of
ith row and jth column. Denoting

pi
4
= x is Ai, qj

4
= y is Bj, rk

4
= z is Ck, (5.5)

we can write (5.4) as

If pi and qj then rk, rk = rij . (5.6)

The and part in (5.4) and (5.6), called precondition,

x is Ai and y is Bj, i.e. pi and qj, (5.7)
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is defined to be composition conjunction (2.10). It is a fuzzy relation in
A × B ⊆ U1 × U2 with membership function

pi ∧ qj = min(µAi
(x), µBj

(y)), (x, y) ∈ A × B ⊂ U1 × U2. (5.8)

The if . . . then rule of inference (5.6) is implication. It expresses
the truth of the precondition. There are several ways to define this
rule. Here following Mamdani (1975) we define the rule of inference
as a conjunction-based rule expressed by operation ∧(min); rk is called
conclusion or consequent. Hence (5.6) can be presented in the form

pi ∧ qj ∧ rk = min(µAi
(x), µBj

(y), µCij
(z)), rk = rij, (5.9)

i = 1, . . . , n; j = 1, . . . ,m; k = 1, . . . , l; and (x, y, z) ∈ A × B × C ⊆
U1 × U2 × U3.

This presentation gives the truth value of the rule which is the result
of the min operation on the membership functions of the fuzzy sets A,B,
and C.

Case Study 17 (Part 2) A Client Financial Risk Tolerance Model

For the client financial risk tolerance model in Case Study 17 (Part
1), n = m = l = 3. Hence the number of if . . . then rules is 9 and
the number of different outputs is 3. Assume that the financial experts
selected the rules presented on the decision Table 5.2.

Table 5.2. If . . . and . . . then rules for the client financial risk tolerance
model.

Total networth B −→

Annual income A ↓

L M H

L L L MO

M L MO H

H MO H H

The rules have as a conclusion the terms in the output C (see 5.3).
They read:
Rule 1: If client’s annual income (CAI) is low (L) and client’s total
networth (CTN) is low (L), then client’s risk tolerance (CRT) is low
(L);
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Rule 2: If CAI is L and CTN is medium (M), then CRT is L;

Rule 3: If CAI is L and CTN is high (H), then CRT is moderate (MO);

Rule 4: If CAI is M and CTN is L, then CRT is L;

Rule 5: If CAI is M and CTN is M, then CRT is MO;

Rule 6: If CAI is M and CTN is H, then CRT is H;

Rule 7: If CAI is H and CTN is L, then CRT is MO;

Rule 8: If CAI is H and CTN is M, then CRT is H;

Rule 9: If CAI is H and CTN is H, then CRT is H.

Using the notations (5.5)–(5.8) the above rules can be presented in
the form (5.9):

Rule 1: p1 ∧ q1 ∧ r11 = min(µL(x), µL(y), µL(z)),

Rule 2: p1 ∧ q2 ∧ r12 = min(µL(x), µM(y), µL(z)),

Rule 3: p1 ∧ q3 ∧ r13 = min(µL(x), µH(y), µMO(z)),

Rule 4: p2 ∧ q1 ∧ r21 = min(µM(x), µL(y), µL(z)),

Rule 5: p2 ∧ q2 ∧ r23 = min(µM(x), µM(y), µMO(z)),

Rule 6: p2 ∧ q3 ∧ r23 = min(µM(x), µH(y), µH(z)),

Rule 7: p3 ∧ q1 ∧ r31 = min(µH(x), µL(y), µMO(z)),

Rule 8: p3 ∧ q2 ∧ r32 = min(µH(x), µM(y), µH(z)),

Rule 9: p3 ∧ q3 ∧ r33 = min(µH(x), µM(y), µH(z)).

These rules stem from everyday life. It is quite natural for a person
with low income and low networth to undertake a low risk and a person
with high annual income and high networth to afford high risk. However,
for various reasons a client may not want to tolerate high risk or on the
contrary, may be willing to accept it regardless of income and networth.
The experts, following a discussion with the client eventually have to
redesign the rules. For instance, in the first case when the client prefers
not to take a high risk, the conclusion part of the rules could be changed:
in rules 3, 5, and 7, MO could be substituted by L; in rules 6 and 8,
H could be substituted by MO. That will ensure a lower risk tolerance
for the client which will lead to a more conservative investment policy.

2
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5.4 Rule Evaluation

If the inputs to the FLC model are x = x0 and y = y0, then we have to
find a corresponding value of the output z. The real numbers x0 and y0

are called readings; they can be obtained by measurement, observation,
estimation, etc. To enter the FLC model, x0 and y0 have to be translated
to proper terms of the corresponding linguistic variables.

A reading has to be matched against the appropriate membership
functions representing terms of the linguistic variable. The matching is
necessary because of the overlapping of terms (see Figs. 5.2, 5.3); it is
called coding the inputs.

This is illustrated in Fig. 5.5 where to the reading x0 ∈ U1 there cor-
respond two constant values, µAi

(x0) and µAi+1
(x0) called fuzzy reading

inputs. They can be interpreted as the truth values of x0 related to Ai

and to Ai+1, correspondingly.

In the same way we can obtain the fuzzy reading inputs correspond-
ing to the reading y0 ∈ U2 (Fig. 5.6). In both figures only several terms
of the fuzzy sets A and B (see (5.1)) are presented.
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Fig. 5.5. Fuzzy reading inputs corresponding to reading x0.

The straight line passing through x0 parallel to µ axis intersects only
the terms Ai and Ai+1 of A in (5.1) thus reducing the fuzzy terms to
crisp values (singletons) denoted µAi

(x0), µAi+1
(x0). The line x = x0

does not intersect the rest of the terms, hence we may say that the
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intersection is empty set with membership function 0. Similarly the
line passing through y0 intersects only the terms Bj and Bj+1 of B in
(5.1) which gives the crisp values (singletons) µBj

(y0), µBj+1
(y0).
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Fig. 5.6. Fuzzy reading inputs corresponding to reading y0.

The decision Table 5.1 with x = x0 and y = y0, and the terms
substituted by their corresponding membership functions, reduces to
Table 5.3 which we call induced decision table.

Table 5.3. Induced decision table and active cells.

0 · · · µBj
(y0) µBj+1

(y0) · · · 0

0 0 · · · 0 0 · · · 0
...

...
...

...
...

µAi
(x0) 0 · · · µCij

(z) µCi,j+1
(z) · · · 0

µAi+1
(x0 0 · · · µCi+1,j

(z) µCi+1,j+1
(z) · · · 0

...
...

...
...

...

0 0 · · · 0 0 · · · 0

Only four cells contain nonzero terms. Let us call these cells active.
This can be seen from rules (5.8); if for x = x0 and y = y0 at least one
of the membership functions is zero, the min operator produces 0.
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5.5 Aggregation (Conflict Resolution)

The application of a control rule is also called firing. Aggregation or
conflict resolution is the methodology which is used in deciding what
control action should be taken as a result of the firing of several rules.

Table 5.3 shows that only four rules have to be fired. The rest will
not produce any results.

We will illustrate the process of conflict resolution by using those four
rules numbered for convenience from one to four; they form a subset of
(5.4):

Rule 1: If x is A(0)
i and y is B(0)

j then z is Cij,

Rule 2: If x is A(0)
i and y is B(0)

j+1 then z is Ci,j+1,

Rule 3: If x is A(0)
i+1 and y is B(0)

j then z is Ci+1,j,

Rule 4: If x is A(0)
i+1 and y is B(0)

j+1 then z is Ci+1,j+1,

The and part of each rule, i.e. the precondition, called here strength
of the rule or level of firing is denoted by

αij = µAi
(x0) ∧ µBj

(y0) = min(µAi
(x0), µBj

(y0)),
αi,j+1 = µAi

(x0) ∧ µBj+1
(y0) = min(µAi

(x0), µBj+1
(y0)),

αi+1,j = µAi+1
(x0) ∧ µBj

(y0) = min(µAi+1
(x0), µBj

(y0)),
αi+1,j+1 = µAi+1

(x0) ∧ µBj+1
(y0) = min(µAi+1

(x0), µBj+1
(y0)).

(5.10)

The equalities (5.10) can be obtained from (5.8) for x = x0 and
y = y0. The real numbers αij , αi,j+1, αi+1,j , and αi+1,j+1 are placed in
the Table 5.4 called here rules strength table.

Table 5.4. Rules strength table.

0 · · · µBj
(y0) µBj+1

(y0) · · · 0

0 0 · · · 0 0 · · · 0

...
...

...
...

...

µAi
(x0) 0 · · · αij αi,j+1 · · · 0

µAi+1
(x0 0 · · · αi+1,j αi+1,j+1 · · · 0

...
...

...
...

...

0 0 · · · 0 0 · · · 0



5.5. Aggregation (Conflict Resolution) 139

Table 5.4 is very similar to Table 5.3 with the difference that the
active cells in Table 5.4 are occupied by the members expressing the
strength of the rules while the same cells in Table 5.3 are occupied by
fuzzy sets (outputs). We use the elements in the four active cells in
both tables to introduce the notion control output.

Control output (CO) of each rule is defined by operation conjunction
applied on its strength and conclusion as follows:

CO of rule 1 : αij ∧ µCij
(z) = min(αij , µCij

(z)),

CO of rule 2 : αi,j+1 ∧ µCi,j+1
(z) = min(αi,j+1, µCi,j+1

(z)),

CO of rule 3 : αi+1,j ∧ µCi+1,j
(z) = min(αi+1,j , µCi+1,j

(z)), (5.11)

CO of rule 4 : αi+1,j+1 ∧ µCi+1,j+1
(z) = min(αi+1,j+1, µCi+1,j+1

(z)).

These control outputs can be obtained from (5.9) for x = x0, y = y0.
This is equivalent to performing operation conjunction or min on the
corresponding elements in the active cells in Table 5.4 and Table 5.3 as
shown below

Table 5.5. Control outputs of rules 1–4.

· · · · · · · · · · · ·
· · · αij ∧ µCij

(z) αi,j+1 ∧ µCi,j+1
(z) · · ·

· · · αi+1,j ∧ µCi+1,j
(z) αi+1,j+1 ∧ µCi+1,j+1

(z) · · ·
· · · · · · · · · · · ·

The nonactive cells have elements zero; they are not presented in
Table 5.5.

The outputs of the four rules (5.11) located in the active cells (Ta-
ble 5.5) now have to be combined or aggregated in order to produce one
control output with membership function µagg(z). It is natural to use
for aggregation the operator ∨ (or) expressed by max:

µagg(z) = (αij ∧ µCij
(z)) ∨ (αi,j+1 ∧ µCi,j+1

(z))

∨(αi+1,j ∧ µCi+1,j
(z)) ∨ (αi+1,j+1 ∧ µCi+1,j+1

(z))

= max{(αij ∧ µCij
(z)), (αi,j+1 ∧ µCi,j+1

(z)),

(αi+1,j ∧ µCi+1,j
(z)), (αi+1,j+1 ∧ µCi+1,j+1

(z))}. (5.12)
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Note that in (5.11) and (5.12) operation ∧ (min) is performed on a
number and a membership function of a fuzzy set. Previously we have
been using operation min on two numbers, two crisp sets, and two fuzzy
sets, hence now some clarification is needed. Suppose we have the real
number α and the fuzzy set C with membership function µC(z). Then
we define

µα∧µC
(z) = α ∧ µC(z) = min(µα(z) = α, µC(z)) (5.13)

where µα(z) = α is a straight line parallel to z-axis; geometrically this
is a truncation of the shape of µC(z).

The membership function (5.13) is shown in Fig. 5.7 for the two most
often used shapes of µC(z), triangular and trapezoidal; it represents a
clipped fuzzy number (a nonnormalized fuzzy set).

µ
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α α

µ µ

µ µ

µ µ

α

α α

α (z)=(z)=α α

z z

1

µ

c (z)

c (z) c

c (z)

(z)

Fig. 5.7. Clipped triangular and trapezoidal numbers.

The aggregated membership function (5.12) also represents a non-
normalized fuzzy set consisting of parts of clipped membership functions
(5.13) of the type shown on Fig. 5.7 (or similar). In order to obtain a
crisp control output action, decision, or command we have to defuzzify
µagg(z); this is the subject of the next section.

Case Study 17 (Part 3) A Client Financial Risk Tolerance Model

Consider Case Study 17 (Parts 1 and 2) assuming readings: x0 = 40
in thousands (annual income) and y0 = 25 in ten of thousands (total
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networth). They are matched against the appropriate terms in Fig. 5.8
(for the terms see Figs. 5.2 and 5.3). The fuzzy inputs are calculated
from (5.3). Note that x = 40 and y = 25 are substituted for v instead
of 40,000 and 250,000 since x and y are measured in thousands and ten
of thousands. The result is

µL(40) =
1

3
, µM(40) =

2

3
, µL(25) =

5

6
, µM(25) =

1

6
.

For x = x0 = 40 and y = y0 = 25 the decision Table 5.2 (a particular
case of Table 5.1) reduces to the induced Table 5.6 (a particular case of
Table 5.3).

0

µ

0 40 50 8020

L M

µ

L M

5/6

1/6

50

y 10
4

1/3

2/3

25

x 10
3

Fig. 5.8. Fuzzy reading inputs for the clients financial risk tolerance
model. Readings: x0 = 40 and y0 = 25.

Table 5.6. Induced decision table for the clients financial risk tolerance
model.

µL(25) = 5
6 µM(25) = 1

6 0

µL(40) = 1
3 µL(z) µL(z) 0

µM(40) = 2
3 µL(z) µMO(z) 0

0 0 0 0

There are four active rules, 1,2,4,5 given in Case Study 17 (Part 2).
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The strength of these rules (the and part) according to (5.10) is
calculated as follows:

α11 = µL(40) ∧ µL(25) = min( 1
3 , 5

6 ) = 1
3 ,

α12 = µL(40) ∧ µM(25) = min( 1
3 , 1

6) = 1
6 ,

α21 = µM(40) ∧ µL(25) = min( 2
3 , 5

6) = 2
3 ,

α22 = µM(40) ∧ µM(25) = min( 2
3 , 1

6) = 1
6 .

(5.14)

These results are presented in the rules strength Table 5.7, a partic-
ular case of Table 5.4.

Table 5.7. Rules strength table for the clients financial risk
tolerance model.

µL(25) = 5
6 µM(25) = 1

6 0

µL(40) = 1
3

1
3

1
6 0

µM(40) = 2
3

2
3

1
6 0

0 0 0 0

For the control outputs (CO) of the rules we obtain from (5.11) with
(5.14)

CO of rule 1 : α11 ∧ µL(z) = min( 1
3 , µL(z)),

CO of rule 2 : α12 ∧ µL(z) = min( 1
6 , µL(z)),

CO of rule 3 : α21 ∧ µL(z) = min( 2
3 , µL(z)),

CO of rule 4 : α22 ∧ µMO(z) = min( 1
6 , µMO(z)),

(5.15)

which is equivalent to performing operation min on the corresponding
cells in Table 5.7 and Table 5.6. The result concerning only the active
cells (a particular case of Table 5.5) is given on Table 5.8.

Table 5.8. Control outputs for the client financial risk tolerance model.

· · · · · · · · · · · ·
· · · 1

3 ∧ µL(z) 1
6 ∧ µL(z) · · ·

· · · 2
3 ∧ µL(z) 1

6 ∧ µMO(z) · · ·
· · · · · · · · · · · ·
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The procedure for obtaining Table 5.8 can be summarized on the
scheme in Fig. 5.9 which consists of 12 triangular and trapezoidal fuzzy
numbers located in 4 rows and 3 columns.

The min operations in (5.14) between the fuzzy inputs located in
the first two columns (Fig. 5.9) produce correspondingly the strength
of the rules 1

3 , 1
6 , 2

3 , 1
6 which give the level of firing shown by dashed

horizontal arrows in the second column in the direction to the triangles
and trapezoidals in the third column.

Rule 1

y

Mµ

2τ

4τ

µ
L

τ1
z

z

MOµ

3
z

τ

L
µ

µ
L

z

M

LM

ML

5/6
L

µ

µ µ

1/6

(z))Mµmin(1/6,min(2/3,1/6)2/3

5/6
M

(z))µmin(2/3,min(2/3,5/6)
2/3

y

1/6

(z))Lµmin(1/6,

y

µ

min(1/3, 1/6)
1/3

µ

L

M
(z))µmin(1/3,

µµ

min(1/3, 5/6)

1/3

yx

x

x

x

Rule 2

Rule 3

Rule 4

Fig. 5.9. Firing of rules for the client financial risk tolerance model.

The min operations in (5.15) in the sense of (5.13) and Fig. 5.7 result
in the sliced triangular and trapezoidal numbers by the arrows (Fig. 5.9)
thus producing the trapezoids T1, T2, T3, and T4.



144 Chapter 5. Fuzzy Logic Control for Business, Finance, and . . .

To aggregate the control outputs (5.15) presented also on Table 5.8
we use (5.12). Geometrically this means that we have to superimpose
trapezoids on top of one another in the same coordinate system (z, µ).
However, the outputs of rule 1 and rule 2 are included in the output of
rule 3 which has the largest strength 2

3 . This is shown in Fig. 5.9; the
trapezoids T1 and T2 are contained in T3. Hence we may only consider
aggregation of rule 3 and rule 4.

The aggregated output

µagg(z) = max{min(
2

3
, µL(z)), min(

1

6
, µMO(z))} (5.16)

is geometrically presented in Fig. 5.10. The trapezoids T3 and T4 in
Fig. 5.9 are superimposed a top one another.

2/3

1/6

MOL

(z)
agg

µ

0

1

µ

805020

z

Fig. 5.10. Aggregated output for the client financial risk tolerance
model.

2

5.6 Defuzzification

Defuzzification for average triangular and trapezoidal numbers was pre-
sented in Chapter 3, Section 3.3 and for a fuzzy set representing decision
in Chapter 4, Section 4.1. Here we deal with a more complicated type
of defuzzification.
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Defuzzification or decoding the outputs is operation that produces
a nonfuzzy control action, a single value ẑ, that adequately represents
the membership function µagg(z) of an aggregated fuzzy control action.

There is no unique way to perform the operation defuzzification.
The several existing methods for defuzzification3 take into consideration
the shape of the clipped fuzzy numbers, namely length of supporting
intervals, height of the clipped triangles and trapezoids, closeness to
central triangular numbers, and also complexity of computations.

We describe here three methods for defuzzification.

Center of area method (CAM)

Suppose the aggregated control rules result in a membership function
µagg(z), z ∈ [z0, zq], shown in Fig. 5.11.

0

µ

µ µ

q

agg

agg

agg

(z

(z (z

2

1

)

) )

z z z z z

z

µ
µagg (z)

c ζ ζ

P P1

1 2

2

z2 m

q − 1

q −1

1Q

1z η10 3

p

q

µ

1

zhη
2

Q 2

z
^ ^

^

Fig. 5.11. Defuzzification by the center of area method (CAM).

Let us subdivide the interval [z0, zq] into q equal (or almost equal)
subintervals by the points z1, z2, . . . , zq−1.

The crisp value ẑc according to this method is the weighted average
of the numbers zk (see (3.2) where now rk = zk and λk = µagg(zk)),

ẑc =

∑q−1
k=1 zkµagg(zk)
∑q−1

k=1 µagg(zk)
. (5.17)

The geometric interpretation of ẑc is that it is the first coordinate
(abscissa) of the center (ẑc, µC) of the area under the curve µagg(z)
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bounded below by the z-axis. The physical interpretation is that if this
area is cut off from a thin piece of metal or wood, the center of the area
will be the center of gravity. That is why CAM is called also center of
gravity method.

This method for defuzzification, perhaps the most popular, is quite
natural from point of view of common sense. However, the required
computations are sometimes complex.

Mean of maximum method (MMM)

Consider the same membership function µagg(z) as in the center of area
method (Fig. 5.11). The function has two flat segments (parallel to z
axis). The projection of the flat segment P1P2 with maximum height
on z axis is the interval [ζ1, ζ2] (see Fig. 5.11). Then neglecting the
contribution of the clipped triangular number with flat segment Q1Q2

we define ẑm to be the midpoint of the interval [ζ1, ζ2], i.e.

ẑm =
ζ1 + ζ2

2
. (5.18)

This is a simple formula but not very accurate.

Height defuzzification method (HDM)

This is a generalization of mean of maximum method. It uses all clipped
flat segments obtained as result of firing rules (see Fig. 5.11). Besides
the segment P1P2 with height p there is another flat segment Q1Q2 with
lower height q. The midpoint of the interval [η1, η2], the projection of
Q1Q2 on z, is η1+η2

2 . Then the HDM produces ẑh:

ẑh =
p ζ1+ζ2

2 + q η1+η2

2

p + q
= w1

ζ1 + ζ2

2
+ w2

η1 + η2

2
, (5.19)

i.e. ẑh is the weighted average (3.2) of the midpoints of [ζ1, ζ2] and
[η1, η2] with weights w1 = p

p+q
, w2 = q

p+q
, where p and q are the heights

of the flat segments.
If there are more than two segments, formula (5.19) can be extended

accordingly.
HDM could be considered as both a simplified version of CAM and

a generalized version of MMM.
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Case Study 17 (Part 4) A Client Financial Risk Tolerance Model

Let us defuzzify the aggregated output for the client financial risk
tolerance model (Case Study 17 (Part 3)) by the three methods.

First we express analytically the aggregated control output with
membership function µagg(z) shown on Fig. 5.12 (see also (5.10)). It
consists of the four segments P1P2, P2Q,QQ2, and Q2Q3 located on the
straight lines µ = 2

3 , µ = 50−z
30 , µ = 1

6 , and µ = 80−z
30 , correspond-

ingly. Solving together the appropriate equations gives the projections
of P2, Q,Q2 on z axis, namely 30, 45, 75 (Fig. 5.12). They are used to
specify the domains of the segments forming µagg(z). Hence

µagg(z) =























2
3 for 0 ≤ z ≤ 30,
50−z
30 for 30 ≤ z < 45,

1
6 for 45 ≤ z < 75,
−z+80

30 for 75 ≤ z ≤ 80.

µ=

z

50 80

µ
agg

(z)

L MO

1

Q

P
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4020

P

1

2
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0

1/6
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2/3

1
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30

80−µ=

µ=
30

z50−
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Q

Q

3

30
−20z

Fig. 5.12. Defuzzification: client financial risk tolerance model.

Center of area method

It is convenient to subdivide the interval [0,80] (Fig. 5.12) into eight
equal parts each with length 10.

The substitution of zk = 10, 20, . . . , 70 into µagg(z) gives

zk 10 20 30 40 50 60 70

µagg(zk) 2
3

2
3

2
3

1
3

1
6

1
6

1
6
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According to (5.17) we find,

ẑc =
10(2

3 ) + 20(2
3 ) + 30(2

3 ) + 40(1
3 ) + 50(1

6 ) + 60(1
6 ) + 70(1

6 )
2
3 + 2

3 + 2
3 + 1

3 + 1
6 + 1

6 + 1
6

= 29.41 .

Mean of maximum method

The points P1, P2 form the highest flat segment, ζ1 = 0 and ζ2 = 30.
Then (5.18) gives

ẑm =
0 + 30

2
= 15.

Height defuzzification method

Substituting µ = 1
6 into µ = z−20

30 gives the number 25, the projection of
the point Q1. Hence the flat segments P1P2 and Q1Q2 in Fig. 5.12 have
projections [0,30] and [25, 75], and heights 2

3 and 1
6 , correspondingly,

i.e. ζ1 = 0, ζ2 = 30, η1 = 25, η2 = 75, p = 2
3 , q = 1

6 . The result of
substituting these values in (5.19) is

ẑh =
2
3

0+30
2 + 1

6
25+75

2
2
3 + 1

6

= 22 .

The defuzzification results ẑc = 29.41 ≈ 29, ẑm = 15, and ẑh = 22
obtained by the three methods are close. MMM is very easy to apply but
produces here an underestimated result since it neglects the contribution
of rule 4 whose firing level 1

6 intersects the output MO; ẑm lies in the
middle of the supporting interval of output L. CAM requires some
calculations but takes into consideration the contributions of both rules,
3 and 4. The value ẑc looks more realistic than ẑm. The HDM results
in a value ẑh = 22; it is easy to apply and similarly to CAM reflects the
contributions of rules 3 and 4.

The financial experts could estimate the clients financial risk toler-
ance given that his/her annual income is 40,000 and total networth is
250,000 to be 22 on a scale from 0 to 100 if they adopt the HDM (29 if
they adopt CAM). Accordingly they could suggest a conservative risk
investment strategy.

2
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5.7 Use of Singletons to Model Outputs

A segment or interval [0, h], h ≤ 1 is its height, parallel to the vertical
axis µ is considered as a fuzzy singleton (see Section 1.2).

Aggregation procedure and defuzzification calculations can be car-
ried out more easily in comparison to those introduced in Sections 5.5
and 5.6 if singletons with height one are chosen to represent the terms
Ck (see 5.2) of the output C (see 5.1).

This is illustrated on the client financial risk tolerance model (Case
Study 17 (Parts 1–4)).

Case Study 18 Use of Singletons for a Client Financial Risk Tolerance
Model

Assume that the financial experts use singletons to model the output
risk tolerance (see Fig. 5.13(a)) while the inputs are defined as in Case
Study 17 (Part 1). Hence instead of the three fuzzy numbers in Fig. 5.4
now there are three singletons in Fig. 5.13(a).

2P
P1

(a) (b)

50100

1 1

µµ

P

Q

1

2

1

22

11

2

1

2

z

1/6

2/3

1/3

MLHML

MLHML

MOLHMOL

90905010 z0

Fig. 5.13. (a) Terms of the output risk tolerance presented by singletons.
(b) Firing of rules and defuzzification.

Consider the same if . . . and . . . then rules given in Table 5.2. Now
L, MO, and H are singletons, not triangular and trapezoidal numbers.
Also adopt the same readings as in Case Study 17 (Part 3) shown on
Fig. 5.8. Then formula (5.14) expressing the strength of the rules is
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valid. The control outputs (5.15) are valid but now µL(z) and µMO(z)
are substituted by the singletons L and MO shown in Fig. 5.13 (a).

The firing of the rules follows the procedure schematically presented
in Fig. 5.9. The first two columns of figures remain without change.
There is a difference only in the third column—the terms L, L, L, and
MO are substituted by the corresponding singletons.

The min operations (5.15) expressing the control outputs now result
in sliced singletons presented in one figure (Fig. 5.13 (b))—not in four
as in Fig. 5.9. The firing of rules 1 and 2 cut the segments L1P1 and
L1P2 out from the singleton L. The firing of rule 3 cut the segment
L1P out from the singleton L; it includes the segments L1P1 and L1P2.
The firing of rule 4 cut the segment M1Q out from the singleton MO.
Hence only two segments, L1P and M1Q form the aggregated output
(Fig. 5.13 (b)).

Operation defuzzification is performed by calculating the weighted
average (see (3.2)) of the points L1 and M1 representing 10 and 50:

ẑ =
2
3(10) + 1

6(50)
1
6 + 2

3

= 18.

Essentially this is a particular case of formula (5.17), CAM, and also
particular case of (5.19), HDM.

The resulting number 18 is more conservative than 29 and 22 pro-
duced correspondingly by CAM and HDM when the terms of the output
C were described not by singletons but by fuzzy numbers (see Case Study
17 (Part 4)).

2

When using singletons, we can expect results close (or equal) to those
which we could get by using fuzzy terms, but not better. Advantage:
simplified calculations. Disadvantage: disconnected segment outputs
(see Fig. 5.13 (b)) weakened the protection of partly overlapping fuzzy
outputs against a model which might be good to lesser degree.

5.8 Tuning of Fuzzy Logic Control Models

In Section 5.2 four steps for designing the terms Ai,Bj , and Ck (see
(5.2)) have been presented. In Section 5.3 if . . . then rules involving
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these terms (see (5.4)) have been formally constructed. That, together
with the readings, predetermines the final result obtained by applying
FLC. However in some situations the experts may find the results to be
somewhat not very satisfactory from common-sense point of view and
this may raise doubt in their own judgement. Then the experts have
the option to improve the FLC model by modification and revision of
the shapes and number of terms, location of peaks, flats, supporting
intervals. Also they may reconsider and redesign the control rules. This
revision is called tuning or refinement. Unfortunately there is no unique
method for such tuning. There are some suggestions in the engineering
literature but this is out of the scope of the book. The experts who
designed the FLC model using their good knowledge and experience
would simply have to do more work and thinking to improve the model
if they feel that this may bring better results.

As an illustration again we use the model in Case Study 17 (Parts
1–4).

Case Study 19 Tuning of a Client Financial Risk Tolerance Model

Assume the experts consider the conclusion of the FLC model,
namely the crisp value 22(HDM) measuring the risk tolerance on the
scale from 0 to 100 to be too small for a person with annual income
40,000 and total networth 250,000. Hence they decide to tune the model
making slight change to the terms of output C-risk tolerance. The mod-
ified terms are shown on Fig. 5.14.

0

L MO

20 40 10080

z

H
µ
1

Fig. 5.14. Modified terms of the output risk tolerance.
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In comparison to Fig. 5.4 there are several changes: (1) The new
terms L and H have new supporting intervals [0, 40] instead of [0, 50]
and [40, 100] instead of [50, 100], correspondingly; (2) the new term
MO has its peak shifted to the left by 10 units; it is still a triangular
number but not in central form.

Assuming everything else in the model in Case Study 17 (Parts 1–
4) stays without change, firing of the same rules produces here the
aggregated output given in Fig. 5.15.
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P1

2

2

1Q Q

P
2/3

1/6

1

µ

z

804020
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Fig. 5.15. Aggregated outputs and defuzzification for the tuned client
financial risk tolerance model.

Solving together µ = 2
3 and µ = 40−z

20 , µ = 1
6 and µ = z−20

20 , µ = 1
6

and µ = 80−z
40 we find that the projections of P1P2 and Q1Q2 are [0, 80

3 ]
and [703 , 220

3 ].
The HDM (formula (5.19)) gives the nonfuzzy control output

ẑt
h =

2
3

0+ 80

3

2 + 1
6

70

3
+ 220

3

3
2
3 + 1

6

= 30.

This value is larger than 22 of the initial model obtained by HDM.
It suggests a quite moderate financial risk tolerance.

2

5.9 One-Input–One-Output Control Model

It was noted in the beginning of Section 5.2 that the control methodol-
ogy can be applied to the simple case of one-input–one-output.
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Let us consider as an illustration one input A and one output C each
consisting of four terms of triangular shape (see Figs. 5.16 and 5.17).
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Fig. 5.16. Input A; terms of A. Reading x0 and fuzzy reading inputs.

0

z

µ
1

4025

1 2 3 4C C C C

10

µ=10−z
10

10
z

µ=
10

25− z

µ=

Fig. 5.17. Output C; terms of C.

The number of the if . . . then rules is four – that is the number of
terms in the input A. Since there is no second input, the rules do not
contain the and connective; they are of the type (5.4) but and and Bj

are missing.

Assume the rules are

Rule 1: If x is A1 then C1,

Rule 2: If x is A2 then C2,

Rule 3: If x is A3 then C3,

Rule 4: If x is A4 then C4,

It is not necessary for Ci to take part in rule i, i = 1, . . . , 4. That
depends on the meaning of Ai and Ci in a particular situation.
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Assume reading x0 = 10. Then substituting 10 for x into µ = 15−x
15

and µ = x
15 gives the fuzzy reading inputs 1

3 and 2
3 (see Fig. 5.16).

Since there is only one input, the strengths or the rules or levels of
firing (5.10) reduce to α1 = 1

3 and α2 = 2
3 , hence two rules are to be

fired.
The control output (CO) of each rule (see 5.11) is

CO of rule 1: α1 ∧ µC1
(z) = min( 1

3 , µC1
(z)),

CO of rule 2: α2 ∧ µC2
(z) = min( 2

3 , µC1
(z)).

The firing of these rules produces independently two clipped trian-
gular numbers. The operation is presented in one figure (Fig. 5.18).
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Fig. 5.18. Firing of two rules. Aggregated output µagg(z).

The sliced triangular numbers C1 and C2 give two trapezoids whose
aggregated output is µagg(z) shown on Fig. 5.18 with tick lines,

µagg(z) = max(min(
1

3
, µC1

(z)), min(
2

3
, µC2

(z));

it is a particular case of (5.12).
For defuzzification we apply the HDM. Substituting µ = 1

3 into
µ = 10−z

10 and µ = 2
3 into µ = z

10 and into µ = 25−z
15 gives the numbers

20
3 , 20

3 , 15, hence the projections of P1P2 and Q1Q2 are [203 , 15] and [0, 20
3 ].

Using formula (5.19) we obtain

ẑh =
2
3

20

3
+15

2 + 1
3

0+ 20

3

2
2
3 + 1

3

= 8.33.
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5.10 Notes

1. The conceptual base for fuzzy logic control was established by
Zadeh (1973) in the paper Outline of a New Approach to the
Analysis of Complex Systems and Decision Processes. Zadeh’s
paper inspired Mamdani to introduce a specific fuzzy control
methodology (Mamdani and Assilian (1975)) which was later de-
veloped further, extended, and applied by many researchers to
different industrial engineering problems. A modern monograph
book on fuzzy modeling and control has been written by Yager
and Filev (1994).

2. Consider more than two inputs (but one output), say three having
correspondingly n, m, and p terms. Then the inference rules will
be of the type if . . . and . . . and . . . then involving two logical
connectives and. The number of the rules is determined by the
product n × m × p. Accordingly this can be generalized for more
inputs. For instance, if n = m = p = 3, the number of rules is
3 × 3 × 3 = 33 = 27. If another (fourth) input also with three
terms is added, the number of rules becomes 27 × 3 = 34 = 81,
etc. Naturally more than two inputs will cause difficulties and
they will increase faster than the increase of the number of inputs.
The use of computer programs helps. In Chapter 6, Section 6.4, a
simplified FLC technique is used in a case with three inputs. Also
it is possible to have models with more than one output. The
number of outputs requires the same number of decision tables.
A two-input–three-output FLC models is presented in Chapter 6,
Section 6.1.

3. Six defuzzification methods are described and analyzed by Hellen-
doorn and Thomas (1993).


